Running neural network models on edge devices is attracting much attention by neural network researchers since edge computing technology is becoming more powerful than ever. However, deploying large neural network models on edge devices is challenging due to the limitation in available computing resources and storage space. Therefore, model compression techniques have been recently studied to reduce the model size and fit models on resource-limited edge devices. Compressing neural network models reduces the size of a model, but also degrades the accuracy of the model since it reduces the precision of weights in the model.