
1

Detection of Chained Clone and Its Application

Norihiro Yoshida

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University 1

NAIST / Osaka University, Japan

Overview of my presentation

Introduction of chained clone detection
N.Yoshida, et al.: "On Refactoring Support Based on
Code Clone Dependency Relation", Proc. of
METRICS 2005.
Basically, it is proposed for refactoring support

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

y, p p g pp
Discussion on other application of chained clone
detection

We would like to try to apply chained clone detection
into supporting other software maintenance activity.

2

Refactoring

Refactoring[1] is a way to deal with code clone problem.
Refactoring is a technique for restructuring an existing
code

Alter software’s internal structure without changing its external
behavior
Improve the maintainability of software
Number one in the stink parade is duplicate code

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University 3

New method

Call statements

[1] M. Fowler, Refactoring: improving the design of existing code, Addison Wesley, 1999

Difficulty of Refactoring

It is difficult to identity refactoring opportunities in
large scale source code.

Where are code fragments that should be merged
into one method?
How should they be merged into one method?

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

How should they be merged into one method?
Extract Method or Pull Up Method Refactroing?

4

New
method

Call
statements

Extract Method Refactoring Pull Up Method Refactoring

Token-based clone detection for refactoring support
(1/2)

In many cases, Type2 clone refactoring is easier than Type3
one.

Type2 clone set is consist of continuous token sequences
it is easy to merge it into one module.

Type3 clone refactoring is comprised of more complicated
steps

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

steps
It needs to solve syntax differences between code fragments.

Scalability of detection
Token-based clone detection tool is more scalable than
syntax-based or semantic-based tools

5

Basically, a set of type2 clones DO NOT have
semantic similarity.

However, target clones for Extract Method or Pull-up
Method should be semantic unit.
In this context, semantic clone detection is more

Token-based clone detection for refactoring support
(2/2)

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

In this context, semantic clone detection is more
suitable for refactoring support.

Most token-based clone detection tools (e.g.,
CCFinder) DO NOT perform inter-procedural
analysis.

One functionality is sometimes implemented by a
chain of methods.

6

2

Proposed tool: Chained clone detection tool

Detection of clone sets connected by callee-caller relations
Scalable detection by analyzing only code fragments in
CCFInder’s output

Call-caller relations are inferred by static analysis

Those are semantically
i il d f i l h

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University 7

Method a2clone set A

Method c1 Method c2

clone set B

clone set C

call call

callcall

similar, and often imply the
same functionality.

It is a better refactoring
opportunity than each type2
clone set.

A pair of chained clones

It is easy to merge each type2
clone set into one module.

Method b1 Method b2

Method a1

Research Goal

Define a set of clone sets having callee-caller relations
as a chained clone
Suggest applicable refactoring pattern for each chained
clone based on chained clone categorization

Chained Clone

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University 8

Method a1 Method a2

Method b1

Method c1

Method b2

Method c2

Definition of chained clone(1)

Chained Method
A set of methods that hold callee-caller
relations

Chained Method Graph
A node represents a method

A Chained Method

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University 9

A node represents a method
An edge represents a callee-caller
relation

A Chained Method Graph

Call Call

Call Call

Definition of chained clone(2)

Chained Clone
For 2 given chained methods CM1 and
CM2, we transform them into chained
method graphs G1 and G2.
For G1 and G2, if the following three
conditions are satisfied, we call the pair

CM1 CM2

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University 10

of CM1 and CM2 as a chained clone.
1. G1 and G2 are isomorphic.
2. Each pair of the corresponding

nodes between G1 and G2, holds a
clone relation.

Chained Clone Set
An equivalence class of chained clones

G1 G2

A pair of nodes filled
with colored same
color is a code clone

Call Call

Call Call

Call Call

CallCall

Applicable Refactorings for Chained Clones

The following refactoring[1] can be applied to merge
chained clones.

Pull Up Method Refactoring
Extract Method Refactoring
Extract Super Class Refactoring

D di th hi h l ti hi

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University 11

Depending on the hierarchy relationship among
Java classes having chained clones, we provide
appropriate refactoring for each chained clone.

All chained clones in a chained clone set is in single class
Extract Method Refactoring is appropriate

All chained clones in a chained clone set is in multiple
classes that have common parent classes

Pull Up Method Refactoring is appropriate
[1] M. Fowler: Refactoring: Improving the Design of Existing Code, Addison-Wesley, 1999.

Class A

Method a11 Method a12

Chained Clone

Before Refactoring

Class A

Method a1

After Refactoring

Typical Chained Clones
Case 1 : Extract Method Refactoring

All the methods in a chained clone that are contained in a single class.

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University 12

Method a11

Method a22Method a21

Method a12 Method a1

Method a2

All methods can be merged into two new methods in the class A.
(“Extract Method” Refactoring)

3

Super Class

Method 1

Super Class

Before Refactoring After Refactoring

Typical Chained Clones
Case 2 : Pull Up Method Refactoring

All methods in a chained clone belong to classes that have common
parent classes.
All methods of each chained method are in the same class respectively.

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University 13

Class A

Method a1

Method b2Method a2

Class B

Method b1

Chained Clone

Class A

Method 2

Class B

All methods of each code clone can be merged into a new method in the
parent class. (“Pull Up Method” Refactoring)

Case Study
Overview

Objective
How many chained clone sets exist in actual Java programs?
Is it possible to classify chained clone sets and to apply suggested
refactorings to them?

Target software
Open source software

ANTLR 2 7 4 (47 000 LOC 285 Classes）

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University 14

ANTLR 2.7.4 (47,000 LOC, 285 Classes）

Compiler-Compiler (Java, C++, C#)
JBoss 3.2.6 (640,000 LOC, 3364 Classes)

J2EE Application Server
Commercial software

X (70,000 LOC, 309 Classes)
Y (81,000 LOC, 290 Classes)

We used CCFinder to detect code clones[1].
[1] T. Kamiya, et. al., CCFinder: A multi-linguistic token-based code clone detection system
for large scale source code, IEEE TSE, vol.28, no.7, pp.654-670, Jul. 2002.

Case Study
Detected chained clone sets (Open source software)

ANTLR 2.7.4

Category # of chained
clone sets

of methods

max min

Ext. Met. 3 4 4

Pul. Met. 6 40 6

Ext Sup 1 4 4

JBoss 3.2.6

Category # of chained
clone sets

of methods
max min

Ext. Met. 16 13 4

Pul. Met. 17 8 4

Ext. Sup. 13 29 4

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University 15

Ext. Sup. 1 4 4

Other 0

Total 10

Ext. Sup. 13 29 4

Other 4 44 6

Total 50

In category 21, the max of the
number of methods in very large

Similar functionalities for each
language (Java, C#, C++)

The number of chained clone sets in
category 31 is large

JBoss contains several products.
As a result, it has code clones
among them

Case Study
Detected chained clone sets (Commercial software)

X
Category # of chained

clone sets
of methods

max min

Ext. Met. 2 13 13

Pul. Met. 0

Ext. Sup. 7 26 4

Y
Category # of chained

clone sets
of methods

max min

Ext. Met. 0

Pul. Met. 9 14 4

Ext. Sup. 0

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University 16

p

Other 0

Total 9

p

Other 0

Total 9

The number of chained clone sets in
category 31 is large

Two packages have similar utility
classes

In only category 21, chained clone sets
were detected

X Software has code clones among
several classes which inherit the same
component class

GeneralCharFormatter

escapeString

call

Extract Super Class

Case Study
Refactoring for Category 31（ANTLR）

We applied suggested refactorings to chained clone sets in ANTLR.

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University 17

CSharp
CharFormatter

escapeString

escapeChar

Java
CharFormatter

escapeString

escapeChar

call call CSharp
CharFormatter

Java
CharFormatter

escapeChar

call

Before Refactoring After Refactoring

Other applications of chained clone detection

Automated defect detection by checking the
consistency of chained clones

Method a2

call call

Method a1 Method a3

call

clone set A

clone set B

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University 18

Method c1 Method c2

callcall

Method b1 Method b2

Why not cloned?
(Defect?)

clone set B

clone set C Method d

call

Method b3 non-cloned
method

4

Other applications of chained clone detection

Precise and scalable calculation of clone ratio
between methods or classes

Take into account whether callee methods are
cloned

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University 19

Method a2

Method c1 Method c2

call call

callcall

Method b1 Method b2

Method a1clone set A

clone set B

clone set C

Previous calculation is
performed from just target code

Proposed calculation
takes into account callee
methods

Summary

We focus on refactoring for chained clones that consist of
sets of the methods with callee-caller relations

Define chained clone
method to classify chained clones according to their applicable
refactorings
OSS and Industrial case studies

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University 20

OSS and Industrial case studies

Future Works
Apply our proposed method to other Java programs
other applications of chained clone detection

