Detection of Chained Clone and Its Application

Norihiro Yoshida
NAIST / Osaka University, Japan

duale School ol niora i Techool ko niel

Overview of my presentation

m Introduction of chained clone detection

¢ N.Yoshida, et al.: "On Refactoring Support Based on
Code Clone Dependency Relation", Proc. of
METRICS 2005.
¢ Basically, it is proposed for refactoring support
m Discussion on other application of chained clone
detection

¢ We would like to try to apply chained clone detection
into supporting other software maintenance activity.

” aduale School ol nloaion Soience and Tech sk Uolversil

Refactoring

m Refactoring[1] is a way to deal with code clone problem.
m Refactoring is a technique for restructuring an existing
code

¢ Alter software’s internal structure without changing its external
behavior

+ Improve the maintainability of software
Number one in the stink parade is duplicate code

4— New method

7 Call statements

[1] M. Fowler, Refactoring: improving the design of existing code, Addison Wesley, 1999

_»

. Depainens of Conpuie Science, Graduale Sehool ot ioralion Science and Tech Qaia uiveraiy

Difficulty of Refactoring

m It is difficult to identity refactoring opportunities in
large scale source code.

#Where are code fragments that should be merged
into one method?

¢ How should they be merged into one method?
»Extract Method or Pull Up Method Refactroing?

New]
| method 2

— » 7Call »
—— statements | p—— || ——
I

Extract Method Refactoring Pull Up Method Refactoring

e opdiment of Compuicr S Gaduzie School otiniornalion Science and Techy Qg univein 4

Token-based clone detection for refactoring support
(2/2)

m In many cases, Type2 clone refactoring is easier than Type3
one.

¢ Type2 clone set is consist of continuous token sequences
» it is easy to merge it into one module.

Type3 clone refactoring is comprised of more complicated
steps

> It needs to solve syntax differences between code fragments.

m Scalability of detection

¢ Token-based clone detection tool is more scalable than
syntax-based or semantic-based tools

. Depainens of Conpuie Science, Graduale Sehool ot ioralion Science and Tech

Token-based clone detection for refactoring support
(212)

m Basically, a set of type2 clones DO NOT have
semantic similarity.
¢ However, target clones for Extract Method or Pull-up
Method should be semantic unit.
< In this context, semantic clone detection is more
suitable for refactoring support.
m Most token-based clone detection tools (e.g.,
CCFinder) DO NOT perform inter-procedural
analysis.

¢ One functionality is sometimes implemented by a
chain of methods.

L Depaineni of Conpuier Seicce, Gradugie Sehool ol nioal

Proposed tool: Chained clone detection tool

m Detection of clone sets connected by callee-caller relations

m Scalable detection by analyzing only code fragments in
CCFInder’s output
Call-caller relations are inferred by static analysis

Those are semantically
similar, and often imply the

A pair of chained clones ; b
same functionality.

Research Goal

m Define a set of clone sets having callee-caller relations
as a chained clone

m Suggest applicable refactoring pattern for each chained
clone based on chained clone categorization

Chained Clone

{ Method al] [Method a2]

! ! 1 H H
clone set A | [Method al || :{ Method a2 }] - - : H
H _ i . 1 It is a better refactoring v v
= call H ! i
: ¥ :: vcall . opportunity than each type2 { Method bl } { Method b2]
| ' 1 clone set. , .
1| Methodbl | | Method b2 : H H
1 - 1 < H H
1 v call : 1 v call : v v
! 1 It is easy to merge each type2
cloneset C | { Method c1 } ! :[Method c2]Adone set into one module. Method c1 Method c2
1
e e i e e e e e

Definition of chained clone(1)

m Chained Method

¢ A set of methods that hold callee-caller
relations

m Chained Method Graph A Chained Method

¢ Anode represents a method l
¢ An edge represents a callee-caller
relation
elatio Call Call
Call call

A Chained Method Graph

> .

weEogineering Loboriory, Depiment of Compuier Sci Gaduzie School otiniornalion Science ond Techy Qg Univein 9

Definition of chained clone(2)

m Chained Clone cM1 cM2
& For 2 given chained methods CM1 and
CM2, we transform them into chained
method graphs G1 and G2.

clone relation.

A pair of nodes filled
with colored same
color is a code clone

= Chained Clone Set
4 Anequivalence class of chained clones

> .

o Engineering Laboraiory, Deparimen of Compuier Science, Gradugle Sehool of nioaiion Seience and Technolony, Ocgka Unlverai

& For G1 and G2, if the following three l 1
conditions are satisfied, we call the pair
of CM1 and CM2 as a chained clone. Gl G2
1. Gl and G2 are isomorphic. cal cal Cal call
2. Each pair of the corresponding
nodes between G1 and G2, holds a canllcan call[lcall

10

Applicable Refactorings for Chained Clones

m The following refactoring[1] can be applied to merge
chained clones.
¢ Pull Up Method Refactoring
Extract Method Refactoring
Extract Super Class Refactoring
m Depending on the hierarchy relationship among
Java classes having chained clones, we provide
appropriate refactoring for each chained clone.
All chained clones in a chained clone set is in single class
- Extract Method Refactoring is appropriate

All chained clones in a chained clone set is in multiple
classes that have common parent classes

- Pull Up Method Refactoring is appropriate
¢ [1] M. Fowler: Refactoring: Improving the Design of Existing Code, Addison-Wesley, 1999. 33

Typical Chained Clones
Case 1 : Extract Method Refactoring

= All the methods in a chained clone that are contained in a single class.

Before Refactoring After Refactoring

Class A Class A

Chained Clon

T (N

Method all |[Method a2 T | Method al
2

i [method a21 | [Methodazz | |

s

N — N —
All methods can be merged into two new methods in the class A.
(“Extract Method” Refactoring)

> .

o Engineering Laboraiory, Deparimen of Compuier Science, Gradugle Sehool of nioaiion Seience and Technolony, Ocgka Unlverai

Typical Chained Clones
Case 2 : Pull Up Method Refactoring

= All methods in a chained clone belong to classes that have common
parent classes.

= All methods of each chained method are in the same class respectively.
Before Refactoring After Refactoring

Super Class
ZX

Class A Class B

"
Chained Clone i
A enod a1 | (Method bz
B v
\LM@ H @bg,) ‘ [cassa || cassB |

All methods of each code clone can be merged into a new method in the
parent class. (“Pull Up Method” Refactoring)

; e Epglnesring Laboraiory, Deprmen ol Compul duale School ol inioalon Seience and Techool

Super Class

saka 4 1

Case Study
Overview

= Objective
4 How many chained clone sets exist in actual Java programs?

+ Is it possible to classify chained clone sets and to apply suggested
refactorings to them?

m Target software
Open source software
» ANTLR 2.7.4 (47,000 LOC, 285 Classes)
v Compiler-Compiler (Java, C++, C#)
> JBoss 3.2.6 (640,000 LOC, 3364 Classes)
v/ J2EE Application Server
Commercial software
» X (70,000 LOC, 309 Classes)
» Y (181,000 LOC, 290 Classes)
m We used CCFinder to detect code clones[1].

[1] T. Kamiya, et. al., CCFinder: A multi-linguistic token-based code clone detection system
for large scale source code, IEEE TSE, vol.28, no.7, pp.654-670, Jul. 2002.

; e Epglnesing Laboraiory, Deprmen ol Comoul duaie School ol niomalon Seience and Techool

e L 14
Case Study Case Study
Detected chained clone sets (Open source software) Detected chained clone sets (Commercial software)
= ANTLR2.7.4 = JBoss 3.2.6 = X =Y
of chai # of meth # of chai # of meth
Category | # of chained | # of methods Category | # of chained | # of methods Cettoct) ch:n: :;ntsed ctimethocs CEEy clc(:m: :;::d oijmet Oés
clone sets | max | min clone sets max min max min max min
Ext. Met. 3 4 4 Ext. Met. 16 13 4 Ext. Met. 0 Ext. Met. 2 13 13
Pul. Met. 6 40 6 Pul. Met. 17 8 4 Pul. Met. 9 14 4 Pul. Met. 0
Ext. Sup. 1 4 4 Ext. Sup. 13 29 4 Ext. Sup. 0 Ext. Sup. 7 26 4
Other 0 Other 4 44 6 Other 0 Other 0
Total 10 Total 50 Total 9 Total 9
i The number of chained clone sets in
In category 21, the max of the The number of chained clone sets in we?;llge(itzt:tgzry 21, chained clone sets category 31 is large
number of methods in very large category 31 is large
- X Software has code clones among >Two packages have similar utility
- Similar functionalities for each - JBoss contains several products. several classes which inherit the same classes
language (Java, C#, C++) As a result, it has code clones component class
among them

Case Study
Refactoring for Category 31 (ANTLR)

= We applied suggested refactorings to chained clone sets in ANTLR.
Extract Super Class

GeneralCharFormatter

/fescapestring N\
/q call
{escapeChar V

CSharp J
CharFormatter rFormatter
/,%eﬁpestringJ [escape‘Strm\ :
\ ,call ; call) CSharp Java
i CharFormatter CharFormatter
Tescanechar | | [escapechar—T

Before Refactoring After Refactoring

; fiaie Engincering Laborgion

Reparneni of Conpuier Seience, Gradugie Sehool ol niormalion Science and Technology, Ocoia Univer

N

Other applications of chained clone detection

= Automated defect detection by checking the
consistency of chained clones

clone set A [Method al J [Method a2] [Method a3]

+ call : H
¥ v(:all v&:all

() [Y [\
[Method b1l J { Method b2 J { Method b3 J

: : call = call
v call vca vcax

non-cloned
method

clone set C [Method c1] { Method c2 } { Method d }

Why not cloned?
(Defect?)

; fiaie Engincering Laborgion

Repdimenl of Compuer Soi Giaduzie School otiniornation Science and Techoology, Ocgka Univercih 18

Other applications of chained clone detection

m Precise and scalable calculation of clone ratio
between methods or classes

¢ Take into account whether callee methods are
cloned

Summary

Previous calculation is
clone set A { Method al } [Method a2 performed from just target code

m We focus on refactoring for chained clones that consist of
sets of the methods with callee-caller relations
Define chained clone

+ method to classify chained clones according to their applicable
refactorings

OSS and Industrial case studies

T call Tl = Future Works
v y Proposed calculation « Apply our proposed method to other Java programs
{ ERes] A } [penedbe J takeﬁ ";m aezanl eallee + other applications of chained clone detection
D call : call e
A 4 v
clonesetC { Method c1 } [Method c2

