
Social Network Analysis in Open Source Software Peer
Review

Xin Yang
Nara Institute of Science and Technology, Japan

kin-y@is.naist.jp

ABSTRACT
Software peer review (aka. code review) is regarded as one
of the most important approaches to keep software quality
and productivity. Due to the distributed collaborations and
communication nature of Open Source Software (OSS), OSS
review differs from traditional industry review. Unlike other
related works, this study investigated OSS peer review pro-
cesses from social perspective by using social network anal-
ysis (SNA). We analyzed the review history from three typi-
cal OSS projects. The results provide hints on relationships
among the OSS reviewers which can help to understand how
developers work and communicate with each other.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Code inspections and walk-throughs; E.1 [Data Structures]:
Graphs and networks

Keywords
open source, peer review, social network

1. INTRODUCTION
Software peer review refers to the code inspections by de-

velopers, rather than the author himself. It can be regarded
as one of the most important activities for software develop-
ment [2, 1]. Software project developers apply peer review
for two main benefits: reducing defects and saving cost. The
traditional peer review (or inspection) is established by Fa-
gan, which performs peer review activities in the form of
group meeting [6, 5].
In the past decade, open source software (OSS), which is a

very unique and dynamic software development manner, has
been adopted by many software projects. Most of the OSS
projects have geographically distributed development envi-
ronment. and there are very few chances for developers to
have face-to-face communication. Unless changing the ap-
proach for peer review, the traditional meeting-based peer

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE’14 , November 16–22, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11 ...$15.00.

review seems hard to be applied on OSS projects. More-
over, developers’ experiences, behaviors and attitude can af-
fect the quality of source code. As a result, it is demanding
experienced experienced developers could share their knowl-
edge with new members by reviewing their code in OSS soci-
ety. Furthermore, having a good development community to
share those experiences and knowledge is demanded. We in-
vestigated some related studies that have been done in OSS
peer review [12, 13], to the best of our knowledge, this is
the first research constructing social networks from mining
peer review repository and also performing social network
analysis to study OSS peer review process.

In this study, we investigated the importance of OSS con-
tributors by their roles (or positions) in peer review. We
used social network analysis (SNA) to perform our study
bug tracking system. We applied this approach on peer re-
view system to generate peer review social networks named
PeRSoN (Peer Review Social Network). Then, we analyzed
three typical OSS projects: Android Open Source Project
(AOSP), Qt and OpenStack as case study. The preliminary
result gives us hints about the relationships among OSS peer
review contributor roles, their activities, and the network
structure. Our research questions can be summarized as
follows:

RQ1 Is there any relationship between the contributors’
activities and their network positions?

RQ2 Who is the most important contributor in OSS peer
review?

For RQ1, we started from the most standard social net-
work measures as centrality metrics to measure the network
position of each contributor. Then we performed correlation
for contributor activities and their social network measures.
For RQ2, we summarized and separated all the peer re-
view contributors into several different role groups and we
successfully found that, most active reviewers who have Ver-
ification authority are the network center which implies the
most important contributors.

2. RELATED WORK AND BACKGROUND
Some studies on OSS peer review have been done in recent

years. Rigby et al. has examined Apache Server Project and
created some metrics similar to traditional inspection in or-
der to find an efficient and effective OSS review technique
[12]. They also have studied the broadcast nature of OSS
peer review, which is different from the traditional peer re-
view method [13]. Some studies also suggest using review
bot to reduce human effort and improve review quality [4].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the author/owner(s).

FSE’14, November 16–21, 2014, Hong Kong, China
ACM 978-1-4503-3056-5/14/11
http://dx.doi.org/10.1145/2635868.2661682

820

Comparing with e-mail based peer review, researchers found
web-based tools are preferred in modern peer review because
contributors can easily check the review status of source code
[3]. In our study, we analyzed the review community by its
social networks.
Social network is a network structure in which the vertices

represent people or groups of people, and the edges repre-
sent social interaction between them such as conversation or
notification [11]. Andrew et al. applied social networks on
failure prediction [10]. In our study, we create PeRSoN by
extracting peer review history data from three OSS projects.
The peer review history data comes from their code review
systems. All three projects use Gerrit, a web-based code
review system to perform code review from code repository
(all these projects use Git as to manage source code). We
sought to investigate the potential relationship between con-
tributors’ activities and their importance in the social net-
work. By applying some standard centrality measures, we
were able to analyze our PeRSoN from social aspect. Free-
man defined three centrality measures: Degree, Closeness
and Betweenness, which represent the importance of vertex
from different perspective [7]. Below are some of the impor-
tant terms that will be used throughout this paper:

• Author and Reviewer. An author represents the
contributor who submits code patch and the owner of
the code review report. A reviewer represents the
contributor who review the patchset.

• Approver and Verifier. An approver is a special
reviewer who is experienced and has approval author-
ity by checking whether the code patch follows the best
practices of the current project and fits the project’s
stated purpose. A verifier is responsible for build-
ing, testing and verifying the code patch and decides
whether it is suitable for merging into the code repos-
itory. Verifiers can be either human contributors or
automatic test tools.

3. APPROACH AND UNIQUENESS
The traditional research on software engineering always

focuses on source code metrics and development history, but
we applied a novel approach from social perspective to study
peer review which is an important phase in software devel-
opment. Our dataset comes from AOSP, Qt and OpenStack.
All these projects use Git to manage the source codes and
Gerrit to manage peer reviews. The main approach con-
sisted of 3 main steps:
1) Preparation before experiment. Before the experiment,

we extracted the raw review dataset from the Gerrit server
of each project. The details of mining review repository ap-
proach can be found from the study of Hamasaki et al. [8].
Our raw data set is available to download1. Because we fo-
cused on social aspect of OSS peer review, the main dataset
that we extracted is the contributors information and their
activities history. In order to investigate the common of
contributors, we grouped the contributors into several role
groups by their different review activities.
2) PeRSoN Generation. After we have the contributors

information and their review histories, we started to gener-
ate the peer review social network. We applied an approach
which is used for generating bug report network [9]. How-
ever, our networks were generated from peer review reports.
1http://sdlab.naist.jp/reviewmining/

Table 1: Correlation of Most Active Verifier Activity
And Centrality Measure.

Projects Degree Betweenness Closeness
AOSP 0.952 0.789 0.485
OpenStack 0.964 0.992 0.868
Qt 0.953 0.884 0.795

Based on the broadcasting nature of OSS peer review, we
assumed that the contributors who appeared in the same
review report must have communications with each other.
Thus, we connected all the contributors who participated in
the same report.

3) Analysis. We performed social network analysis (cen-
trality measure) for each contributor and analyzed the rela-
tionship between contributors centrality measures and their
activities using correlation2. We applied three standard cen-
trality measures: degree, closeness and betweenness on the
experiment to measure the importance of contributors from
three different perspective. Then we compared the central-
ity of contributors with their review activities such as sub-
missions, reviews, approvals, verifications. In order to find
special features from the whole review community, we sepa-
rated contributors into different role groups. At the end we
applied Wilcoxon-Mann-Whitney test to evaluate the clas-
sification of roles.

4. RESULT AND CONTRIBUTION
Our results indicate there is a strong linear correlation

between verifiers activities and their centrality measures in
AOSP (degree and betweenness but not including closeness)
[15]. Furthermore, we investigated the correlations between
the most active verifiers activities and their centrality mea-
sures in three projects. The result in Table 1 indicates that
in OpenStack and Qt, activities of these kind of verifiers
have strong linear relationship to all centralities. In AOSP,
their activities have strong linear relationships to degree and
betweenness, but moderate correlation in closeness. Our
preliminary result gives us hint to study the relationship of
peer review contributors and their network positions.

In addition, we compared the different centrality distribu-
tions among contributor roles by applying Wilcoxon-Mann-
Whitney test [14]. All three projects have been tested by
comparing role groups existing in each project and all p-
values of the comparison are below 0.05. As result, the
most active verifiers have significant more centrality than
the other contributors in these projects.

Based on these results, two main contribution can be sum-
marized as follows:

• There is strong correlation relationship between the
most active verifiers’s activities and their degree cen-
trality and betweenness centrality.

• The most active verifiers are at the center of peer re-
view networks, which implies they are the most impor-
tant contributors in their community.

These contributions provide us with hints on how OSS peer
review contributors work and communicate, which can help
to understand peer review process and investigate the po-
tential defect in peer review community.

2We use Pearson’s correlation because of the normal distri-
bution of data

821

5. REFERENCES
[1] A. Frank Ackerman, Priscilla J. Fowler, and

Robert G. Ebenau. Software inspections and the
industrial production of software. In Proc. of a
symposium on Software validation:
inspection-testing-verification-alternatives, pages
13–40, New York, NY, USA, 1984. Elsevier
North-Holland, Inc.

[2] A.F. Ackerman, L.S. Buchwald, and F.H. Lewski.
Software inspections: an effective verification process.
Software, IEEE, 6(3):31–36, 1989.

[3] Alberto Bacchelli and Christian Bird. Expectations,
outcomes, and challenges of modern code review. In
Proceedings of the 2013 International Conference on
Software Engineering, ICSE ’13, pages 712–721,
Piscataway, NJ, USA, 2013. IEEE Press.

[4] Vipin Balachandran. Reducing human effort and
improving quality in peer code reviews using
automatic static analysis and reviewer
recommendation. In Proceedings of the 2013
International Conference on Software Engineering,
ICSE ’13, pages 931–940, Piscataway, NJ, USA, 2013.
IEEE Press.

[5] M. E. Fagan. Design and code inspections to reduce
errors in program development. IBM Systems Journal,
15(3):182–211, 1976.

[6] M.E. Fagan. Advances in software inspections.
Software Engineering, IEEE Transactions on,
SE-12(7):744–751, 1986.

[7] Linton C. Freeman. Centrality in social networks
conceptual clarification. Social Networks,
1(3):215–239, 1978-1979.

[8] Kazuki Hamasaki, Raula Gaikovina Kula, Norihiro
Yoshida, AE Cruz, Kenji Fujiwara, and Hajimu Iida.
Who does what during a code review? datasets of oss
peer review repositories. In Proceedings of the Tenth
International Workshop on Mining Software

Repositories, pages 49–52. IEEE Press, 2013.

[9] Qiaona Hong, Sunghun Kim, SC Cheung, and
Christian Bird. Understanding a developer social
network and its evolution. In Proceedings of the 2011
27th IEEE International Conference on Software
Maintenance, pages 323–332. IEEE Computer Society,
2011.

[10] Andrew Meneely, Laurie Williams, Will Snipes, and
Jason Osborne. Predicting failures with developer
networks and social network analysis. In Proceedings
of the 16th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, SIGSOFT
’08/FSE-16, pages 13–23, New York, NY, USA, 2008.
ACM.

[11] Mark Newman. Networks: An Introduction. Oxford
University Press, Inc., New York, NY, USA, 2010.

[12] Peter C Rigby, Daniel M German, and Margaret-Anne
Storey. Open source software peer review practices: a
case study of the apache server. In Proceedings of the
30th international conference on Software engineering,
pages 541–550. ACM, 2008.

[13] Peter C Rigby and Margaret-Anne Storey.
Understanding broadcast based peer review on open
source software projects. In Proceedings of the 33rd
International Conference on Software Engineering,

pages 541–550. ACM, 2011.

[14] Douglas A Wolfe and Myles Hollander. Nonparametric
statistical methods. Nonparametric statistical methods,
1973.

[15] Xin Yang, Raula Gaikovina Kula, Camargo Cruz Ana
Erika, Norihiro Yoshida, Kazuki Hamasaki, Kenji
Fujiwara, and Hajimu Iida. Understanding oss peer
review roles in peer review social network (person). In
Proceedings of the 2012 19th Asia-Pacific Software
Engineering Conference-Volume 01, pages 709–712.
IEEE Computer Society, 2012.

822

