
Assessing MCR Discussion Usefulness using

Semantic Similarity

Thai Pangsakulyanont∗, Patanamon Thongtanunam†, Daniel Port‡, Hajimu Iida†

∗ Kasetsart University, Thailand

b5410545036@ku.ac.th
† Nara Institute of Science and Technology, Japan

patanamon-t@is.naist.jp, iida@itc.naist.jp
‡ University of Hawaii at Manoa, USA

dport@hawaii.edu

Abstract—Modern Code Review (MCR) is an informal prac-
tice whereby reviewers virtually discuss proposed changes by
adding comments through a code review tool or mailing list. It
has received much research attention due to its perceived cost-
effectiveness and popularity with industrial and OSS projects.
Recent studies indicate there is a positive relationship between
the number of review comments and code quality. However, little
research exists investigating how such discussion impacts software
quality. The concern is that the informality of MCR encourages
a focus on trivial, tangential, or unrelated issues. Indeed, we have
observed that such comments are quite frequent and may even
constitute the majority. We conjecture that an effective MCR
actually depends on having a substantive quantity of comments
that directly impact a proposed change (or are “useful”). To
investigate this, a necessary first step requires distinguishing
review comments that are useful to a proposed change from those
that are not. For a large OSS projects such as our Qt case study,
manual assessment of the over 72,000 comments is a daunting
task. We propose to utilize semantic similarity as a practical, cost-
efficient, and empirically assurable approach for assisting with
the manual usefulness assessment of MCR comments. Our case-
study results indicate that our approach can classify comments
with an average F-measure score of 0.73 and reduce comment
usefulness assessment effort by about 77%.

Keywords—Modern Code Review, Software Quality, Text Mining

I. INTRODUCTION

Software code review is a well-established software quality
management practice. Fundamentally, the intent is to identify
defects early and encourage quality development policy and
practices (such as adherence to coding standards and improving
code readability). Traditionally, code reviews were a highly
structured activity, but nowadays, less formal and lightweight
code reviews such as Modern Code Review (MCR) [1] are
commonly used within both industry and OSS projects. One
reason for this is that with MCR, unlike formal inspections
[2], in-person meetings are not required. Reviewers can find
problems in proposed changes and hold discussions on them by
adding comments through a code review tool or a mailing list.
Developers then improve the changes in response to these
comments and re-submit for review until the changes are
approved. The popularity of MCR and readily available data
have made it an attractive research area. In particular, because
performance of code review has a clear relationship to the

quality of the software, many studies have investigated the
factors that influence MCR [2]–[5] effectiveness. However,
little research exists investigating how review discussion for
a proposed change impacts software quality. Given that most
proposed changes are triggered from reviewer comments [2], it’s
possible that comments can either positively contribute to the
proposed changes (i.e. are “useful”), or be a discussion which
contributes little directly to the proposed changes (i.e. relatively
“useless”). Since MCR does not require strict guidelines,
checklists, or formal processes, some reviewers tend to focus on
trivial issues (e.g. coding styles), leaving deeper and possibly
more quality-important issues undiscussed [1]. This is a concern
because a low-degree of useful comments may degrade the
overall effectiveness [6], [7] and perceived utility of MCR.

Prior research has focused primarily on the relationship
between number of comments and quality. To the best of our
knowledge, the connection between degree of useful and useless
comments and quality has not been studied. One reason for
this may be that to assess the impact of discussion in MCR,
an effort-intensive manual classification is required as in the
study of Beller et. al. [2]. So while the data may be easy
to access, MCR can produce a massive amounts of change
requests and comments [8] and it is painstaking and time
consuming to manually assess their usefulness. Moreover, given
that comments in MCR are unstructured natural text, open to
subjective judgment, contain tacit understanding, and possible
misinterpretation, assessment errors are inevitable.

In this paper, we present a text mining approach using
semantic similarity to assist in classifying the usefulness
of comments. As manual classification can quickly become
an untenable task, our proposed approach is meant to ease
classifying large amounts of MCR comments in order to
conduct comment and code quality studies (such as those
discussed earlier). By introducing automation support for
assessment grounded with objective empirical criteria, our
proposed method aims to both reduce effort and increase
confidence in classification to a degree that is practical for
addressing very large MCR data sets. Hence through our case
study of Qt project, in this work we explore the following
research questions:

RQ1: Is semantic similarity a good indicator of MCR
comment usefulness?

Code

Repository

Author

Review
Request

Reviewer(s)
Proposed Change

Reviewers’ Comments

Reviewers’ Approve

1 2

3

4

Gerrit Code Review System

Fig. 1: A simplified version of MCR Process based on Gerrit system

RQ2: Is semantic similarity classification cost-efficient, assur-
able, and scalable for large MCR data sets?

The contributions in this paper are as follows:

• An investigation on the practicality of mining natural text
comments in code reviews to classify their usefulness
using semantic similarity.

• Determination and validation of a model relating useful-
ness of comments and semantic similarity.

• A case-study application and performance analysis of the
model for a large open source project based (Qt) on actual
human effort.

II. MODERN CODE REVIEW PROCESS

An overview of MCR process based on the Gerrit code
review system is shown in Fig. 1. The grey area shows the
review process of the system which is composed of four main
steps: (1) An author creates a patch and submits a set of new
or modified files as a review request to the Gerrit system. (2)
Reviewers examine the proposed code changes for defects or
concerns. (3) Reviewers provide comments to the author. The
author creates a revised proposed change according to the
comments and re-submits for review. Reviewers then examine
the revised proposed change. If the revision is not approved,
reviewers provide comments to fix and the process continues
until (4) reviewers can determine that a proposed change can
be merged into the project (approved change) or should not be
merged (rejected).

According to this process, reviewers’ comments are the most
important factor in determining software quality. In particular,
McIntosh et. al. [4] found that components which were reviewed
without discussion (i.e. no comments) are likely to contain
bugs. However, it has not been shown that components with
comments are less likely to contain bugs. Tools supporting
MCR such as Gerrit allow reviewers to freely write messages
to authors (and other reviewers), and frequently, these comments
are superficial or do not clearly identify defects or relevant
issues for the proposed change and are thus of questionable
usefulness and consequently may have little impact on quality.
For example, a comment may be related to something outside
the scope of the proposed change, perhaps author or reviewer
personal issues or inter-personal communication e.g. “Keep up
the good work everyone!”. Microsoft developers reported that
the reviewers often only focus on minor logic errors rather than
discussing deeper design issues [1]. Our observations of the

(a) Superficial comment in change #23302

(b) VCS Workflow comment in change #15041

Fig. 2: Examples of comment in code reviews of Qt project.

Qt project also corroborate this finding. We found that many
examples of comments that are superficial and unhelpful to the
proposed changes. For example, the superficial and unconfident
comment shown in Fig. 2(a) is certainly within the scope of the
proposed change, yet provides little useful information. While
the comment in Fig. 2(b) about using the version control system
(in this case Git) is clearly out of scope, and not directly useful
for the proposed change.

Ultimately, our aim is to understand the impact of useful and
useless comments on code quality. Specifically, what degree of
useful comments are needed to effect positive impact on quality.
Study of this necessitates ascertaining, with high confidence,
the usefulness of a large number of comments. This had proven
difficult to accomplish manually, so here we investigate the
pragmatics of using semantic similarity to assist with this task.

III. SEMANTIC SIMILARITY CLASSIFICATION OF

COMMENT USEFULNESS

Definition: We define a useful comment as one that directly
contributes to improving a proposed change, and a useless
comment as one that does not1.

Our goal here is to improve the efficiency and confidence
in the task of determining the usefulness of review comments.
As with many subjective assessments, usefulness is not dichoto-
mous and hence we must accept a third qualification, unclear,
to allow for the case where a comment does not directly make a
positive contribution but is not clearly out of scope or tangential
i.e. it may be useful. Our approach is largely based on the
assumption that usefulness is determined by the relevance a
comment has to the proposed change (as documented within a
MCR system). A primary factor in relevance is similarly, and
so it is natural for us to consider classification using similarity
conditions. We speculate that the more similar a comment is
to the proposed change, the more relevant it is and hence more
likely useful. Conversely, the more dissimilar2, the less relevant,
and hence less useful.

A. Approach

We seek to develop a model based on similarity criteria to
classify (i.e. determine) comments as either useful or useless.

1Although we call these comments useless in our study, it might actually
have utility–or sometimes be required—in some other contexts, such as to
facilitate communication or to enforce guidelines or process.

2This is technically not simply the opposite of similarity. Unlike similarity,
dissimilarity can be arbitrarily large.

Training data

Com
Comm

Com
CommCommit

Messages Comments

Calculate

Similarity and

Dissimilarity

based on VSM

A list of similarity &

dissimilarity value

Determine

Similarity &

Dissimilarity

Thresholds

5

10

15

20

0 3.5 7 10.5 14Dissimilarity

Threshold

Similarity

Threshold

Test data

Com
Comm

Com
CommCommit

Messages Comments

Calculate

Similarity and

Dissimilarity

based on VSM

A list of similarity &

dissimilarity value

Usefulness Classification

Likelihood Conditions
(Similarity Threshold,

Dissimilarity Threshold)

Manually

Assess comment

Usefulness

Fig. 3: An overview of classification of comment usefulness using
semantic similarity

Given the subjective nature of usefulness, precise classification
conditions probably do not exist and so we resort to conditions
that indicate a meaningful likelihood of classification. That is,
for some degree of similarity a comment is determined to be
most likely useful, and for some degree of dissimilarity it is most
likely useless. Because this is a likelihood model, it is possible
that a classification cannot be determined (i.e. no classification
is likely enough) or determined to be in multiple classifications
(i.e. overlap in likelihood conditions). It is important to keep in
mind that these last two outcomes are not actual classifications
whose interpretation is difficult and perhaps unreliable. The key
to our approach is to determine the classification conditions in
a practical, assurable manner that also is effective to use for
assessing comment usefulness.

Fig. 3 shows an overview of our proposed classification
approach. Usefulness of a comment is determined by computing
its semantic similarity with the commit message of its proposed
change and observing if it satisfies usefulness classification
likelihood conditions. The conditions are simply threshold
values of similarity and dissimilarity empirically determined to
optimize a desired likelihood objectives. While more complex
conditions are possible and may perform better, we begin with
this simple model and investigate if it is sufficient for our
assessment task.

We calculate semantic similarity using the Vector Space
Model (VSM) with the cosine similarity measure, which is a
well-known technique for retrieving relevant documents written
in unstructured natural language. The Euclidian distance, which
is a well-established measure of dissimilarity, applies here
analogously for retrieving irrelevant documents.

The model is a form of supervised classification where
a training set is used to empirically derive similarity and
dissimilarity thresholds that optimize meaningful likelihoods
e.g. likelihood that a comment is useful given its similarity
is greater than some threshold value. The training data is a
small set of randomly-selected pairs of comments and the
corresponding commit messages. These comments are manually
assessed for usefulness. For statistical purposes, at least 30
useful and 30 useless comments must be collected [9]. The
similarity and dissimilarity metrics are then computed for the
training data set. These are used to estimate the similarity

and dissimilarity thresholds ST and DT that best discriminate
useful comments and S′

T and D′

T from useless comments. We
find these thresholds by selecting st, dt values that maximize
the F-measure [6], [7] which is a performance measure for a
binary classification that compromises trade-offs in accuracy of
classification (precision) and coverage of classification (recall).

B. Usefulness Classification Model

Using thresholds derived from the training data as discussed
above, we can classify the usefulness of comments for the entire
review according to the classification model as follows: given
a comment c and a corresponding commit message m,

• Useful: Θ(c,m, ST , DT) = True iff sim(m, c) ≥ ST and
dist(m, c) ≤ DT .

• Useless: Ω(c,m, S′

T , D
′

T) = True iff sim(m, c) ≤ S′

T

and dist(m, c) ≥ D′

T .
• undetermined: neither (no condition holds) or both (over-

lap of conditions) of the above conditions are True.

The functions sim(m, c) and dist(m, c) are the similarity
and dissimilarity measures relative to the proposed change
commit message m for the text of comment c using cosine
similarity and euclidian distance, respectively. Two metrics
are used because they are independently generated and thus
provides better discrimination for classification. We also found
experimentally that using two metrics has higher performance
than just one. We note again that “undetermined” is not a
meaningful classification in our model.

While our proposed approach is straightforward, empirically
driven, and automatically adjusts to the quality of the data, it
has a few drawbacks. First, we must accept that some comments
cannot be reliably or confidently classified. We denote these
as undetermined to differentiate them from comments whose
usefulness is unclear (i.e. cannot be subjectively assessed
as useful or useless). Secondly, owing to the subjective
assessment of usefulness and our need to represent this, not
just any classification, this fundamentally implies performing
supervised classification requiring nontrivial training data to
define representative classification sets.

IV. CASE STUDY

Our case study uses the Qt project review history from the
Gerrit code review tool provided by Hamasaki et. al. [5]. Qt
project is a large open source project composed of numerous
small subsystems. We selected the most active subproject, which
is called qtbase. From this subproject, we used the review
history from May 2011 to June 2012, which contains 6,605
changes and 72,484 comments.

A. Data Preparation

We use the commit messages and comments within Gerrit as
our data set. Before classifying the usefulness of comments, we
first processed the commit message and comments as follows:

1) Removal of automatically generated messages: To con-
sider only reviewers discussion, we ignore all messages
that were automatically generated. These messages may be
generated by Gerrit, the continuous integration system, and the

sanity bot3 to record activities. “Change has been successfully
cherry-picked to the staging branch as ...”, and ‘Sanity review
passed’ are some examples. In practice, they are not considered
in a code review and are not substantively relevant to the
proposed changes and do not directly impact software quality
[4].

We first find and remove all comments written by bots
(i.e. Qt Continuous Integration System and Qt Sanity Bot).
Next, we removed messages, including reviewers comments,
with common useless patterns or occur frequently using
regular expressions. Some example are “Upload patch set
1.” This leaves us only human-written comments that cannot
automatically be classified as useless.

2) Data preprocessing: As is customary for VSM pro-
cessing, we extracted semantic words from commit messages
and comment messages before converting to vector. For each
message, we removed all punctuation signs (except apostrophe)
and other non alphanumeric characters. We also removed
common words (e.g. a, an, the) using Google stop word list4. We
then used Porter stemming algorithm to remove the commoner
morphological and inflexional endings from words in English.

Table I summarizes data set we used for this study after
preparation.

TABLE I: A summary data sets and some statistics.

Total Number Percentage

Commit Messages 6,605 -

All Comments 72,484 -

Reviewers Comments 10,583 15%

Automated Comments 61,814 85%

B. Manual Comment Usefulness Assessment

In this case study, three participants (the first two authors
and one student) independently assessed comment usefulness
by addressing the question, “Is this comment directly useful
for approving or modifying the change request?” Then, the
participants gave a vote for YES if the comment is likely
to be useful and NO otherwise. From the voting scores, we
regarded comments with three YES votes as useful comments,
and comments with no YES votes (i.e. three NO votes) are
useless comments. For the comments with one and two YES

votes, we defined them to have unclear usefulness.

C. Research Questions

RQ1: Is semantic similarity a good indicator of MCR com-
ment usefulness?

To answer this question, we randomly sampled 318 com-
ments from our data set and manually assessed their usefulness.
Then, we used these comments for both training and test
data for our approach to determine its effectiveness. We also
determined the confidence in the effectiveness estimates using
bootstrapping cross validation to estimate variability in the
performance measures due to using sample data.

3It is a bot that automatically checks new proposed changes for trivial sanity
issues, such as line endings, copyright notices, and commit messages

4Available at http://meta.wikimedia.org/wiki/Stop word list/google stop
word list#English

1 2 5

Distance

S
im

ila
ri

ty

0
1

e
−

0
7

1
e

−
0

5
0

.0
0

1
0

.1

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

Comments Class

Useless (YES = 0)

Unclear (YES = 1)

Unclear (YES = 2)

Useful (YES = 3)

Fig. 4: The similarity and distance plot of the training data. The
symbol represents the score, which ranges from 0 to 3. The green area
represents the useful classification model and the red area represents
the useless model.

To determine similarity and dissimilarity thresholds for
our model, we iterated St and Dt values from every unique
similarity and dissimilarity value in our data set. We selected
the thresholds that best classify useful and useless comments
based on maximizing the F1-measure score. The models are
Θ(c, ST = 0.015529, DT = 2.494944) for useful comments,
and Ω(c, S′

T = 0.087522, D′

T = 2.265679) for useless
comments.

Model Effectiveness Results: From 318 samples, the
comment sets from manual assessment were 85 were useless
(YES = 0), 111 were unclear (YES = 1 or 2), and 122 were
useful (YES = 3). The precision and recall were 0.701 and
0.787 for useful model, and 0.648 and 0.824 for useless model.

Figure 4 shows the relationship between usefulness classes
from our model and comment sets from manual assessment.
The green area represents the useful classification model and
the red area represents the useless classification model. The
comments drawn in the green area are those that satisfied the
condition for useful comments, and the comments drawn in
the red area are those satisfied the useless condition, while the
comments drawn in the white area are those not satisfied any
condition (i.e. undetermined) and hence remain unclassified.
The total number of comments from this classification results
is described in Table II.

Corresponding to the precision and recall values, the figure
shows that the majority of comments drawn in green area are
comments from the useful set; very few comments from useless
set fall in this area. Similarly, the majority of comments drawn
in the red area are comments from the useless set. It also shows
that the similarity and dissimilarity values of comments in each
set are not different from other comments in the same set. Most
comments from the useful set are in the top left of the graph
while those from the useless set adhere in the bottom right
of the graph. However, the unclear set still spread out over
the similarity intervals and therefore we cannot determine a

TABLE II: Number of comments classified by our approach against
ground truth data

Result from Results from manual assessment

PrecisionClassification Useless Unclear Unclear Useful

Models (YES=0) (YES=1) (YES=2) (YES=3)

Useful Class 3 12 24 95 0.709

Useless Class 69 23 7 6 0.657

Overlap 1 1 0 1 -

Undetermined 12 24 20 20 -

Recall 0.812 - - 0.778

relationship with their similarity values. That is, we have no
evidence to support that the set of undetermined comments
corresponds to the unclear set, and hence, undetermined is not
a useful classification.

There is an overlap section shown in Fig. 4. This is a conflict
between the two classification conditions where a comment
satisfies both simultaneously. This phenomenon can occur since
similarity and dissimilarity threshold values of each group
are “fuzzy” and both models tend to maximize coverage of
classification. Also similarity and dissimilarity are discreet and
subject to some degree of granularity issues However, from the
results in Table II, only three comments were selected by both
models (overlap). In more extended experiments, less than 2%
were in the overlap set and this contradictory classification is
relatively small. Excluding the overlap classification results,
we can calculate precision and recall as described in Table
II. Furthermore, 12 useless comments (14%) and 21 useful
comments (17%) are still undetermined (drawn in white area).
They were not satisfied by our model, thus suggesting that
there are likely other indicators different from similarity that
determine usefulness.

Validation: We validated our approach using bootstrapping
cross validation. By validation, we mean to estimate the
variability in the performance measure estimates from the
training set to indicate how a accurate these are for the method
in general. We randomly selected 90% of 318 comments for
training set and determine thresholds. The constructed model is
then applied on the remaining 10% comments as the validation
set. The precision, recall and F-measure scores are measured
and recorded. This validation was repeated 300 times to give the
average and standard deviation for these performance measures.
Bootstrapping is used because of concern about our relatively
small sample size and possibly instability in using customary
jackknifing cross-validation. For a baseline comparison, we
also determined the performance of a random classifier (i.e.
places items in classes with equal probability) using the same
methods.

Table III describes the performance of useful and useless
classification models including an average and standard devia-
tion of precision, recall, and F-measure. The results show that
both of our models can achieve 60% of precision and 75%
of recall, approximately. In addition, while we do not present
hypothesis test results, it is clear that our model significantly
outperforms the random model on all performance measures
(for example, the mean precision for Ω is notably higher than
the random classifier with about the same standard deviation).

RQ2: Is semantic similarity classification cost-efficient, assur-
able, and scalable?

TABLE IV: Percentage of classifications results for all comments in
the qtbase project

Result from Sample Comments All Comments

Classification Models 318 comments 10,583 comments

Useful Class 41.8% 42.8%

Useless Class 33.1% 33.7%

undetermined 25.1% 23.5%

Automatic systems are generally known for saving human
effort and also reduce errors. We analyze the results to determine
the performance of our models. In addition, we also consider
scalability of our models as it only validated for small numbers
of comments. The concern is that the model may behave poorly
at larger scale possibly leaving more manual assessment effort
than is saved through using the method.

Cost Efficiency: We determined cost efficiency in terms
of time use for manual assessment. We considered only the
time interval between two votes that are not more than 10
minutes apart since practitioners did not make assessments
under a controlled environment. The average time interval
between votes is 28 seconds. Thus, for 318 comments, the
assessment time should be 7.42 person hours. Using the same
average interval time for all 10,583 comments, we can imply
that the manual assessment time would be 82.3 person hours.
When applying our approach to classify these all comments,
the models left only 23.5% of comments for manual assessment
(undetermined comments) as shown in Table IV. This means
that only 19.34 person hours of additional manual assessment
of these undermined comments are needed, thus saving 76.5%
of human effort.

Assurance: In Table II, 88% of comments classified as
useful received YES = 2 and 3 voting scores. The classification
of the useless class also have similar proportion i.e. having
high number of comment with YES = 0 and 1 voting scores.
We conjecture that the unclear comments with YES = 2 might
actually be useful comments and comments with YES = 1
might actually be useless. The unclear result could be from
error of manual assessment caused by human. To verify this
conjecture, we asked practitioners to re-examine the unclear
comments. We found that 17% of these 66 comments became
unclear because of human error. This shows that some unclear
comments are actually useful or useless, thus giving our model
more confidence.

Scalability: Applying our classification model to all com-
ments results in the proportions shown in Table IV. As the table
shows, the proportions are very similar in both the training
dataset and all dataset. Indeed experiments for our case study
using increasingly large random subsets of comments show the
percentage of undetermined and overlap classification comments
(and hence the manual effort required) is constant at about 23%.
While the percentage might vary for other projects, this result
suggests that our method is scalable to very large numbers of
comments—that is, the percentage of unclassified comments
does not increase. This enables us to assess MCR comments for
very large projects that currently are impractical to do without
assistance.

TABLE III: Results from bootstrapping cross validation of our classification models against random models

Classifcation Precision Recall F-measure Accuracy

Models Avg. STD. Avg. STD. Avg. STD. Avg. STD.

Useful
Θ(c, ST , DT) 0.654 0.116 0.759 0.123 0.693 0.089 0.752 0.067

Random 0.421 0.114 0.376 0.116 0.496 0.144 0.496 0.089

Useless
Ω(c, S′

T
, D′

T
) 0.636 0.144 0.755 0.148 0.681 0.118 0.815 0.064

Random 0.336 0.131 0.269 0.115 0.478 0.182 0.500 0.089

V. DISCUSSION

Our results have shown that our semantic similarity is
practical to assist in reducing effort and error proneness of
manual assessment of comment usefulness. Besides this result,
we also found some noteworthy findings in our case study:

A. What kind of comments cannot be classified using semantic
similarity?

From the results of RQ1, we found that some comments
were not determined by our model. Specifically, we were
interested in why some manually assessed useful comments
(YES = 3) and useless comments (YES = 0) were undetermined.
To investigate the reason behind this, we reviewed these
comments and the corresponding commit messages. We found
that there were few common keywords between the comments
and commit messages and their lengths are relatively unequal.
This makes for low similarity values and low dissimilarity
values as shown in bottom left white area in Fig. 4. There simply
isn’t enough semantic information to determine anything.

B. Can other text mining techniques be used to classify
discussions?

To find relevance between comments and the corresponding
commit message, topic modeling technique can be used, as
the study of [10]. This technique discovers topics for a
given collection of documents. However, in MCR context, the
documents generally are very short statements and discussions,
which makes it unsuitable for LDA. Nevertheless, we have
tried applying Latent Dirichlet Allocation (LDA, a well-
known topic modeling technique) model on our data set. As
expected, LDA generated ambiguous topics with many unrelated
keywords. Again, as discussed above, there is simply not enough
information since the content of the documents are too short,
and thus is insufficient for LDA to correctly determine the
topic. Others techniques could be investigated in the future to
improve results.

C. Can the determined thresholds in this study be used to other
projects?

In this study, we determined the similarity conditions using
a training set from the Qt project and the results show that
the conditions can indeed classify usefulness of comments.
However, we have no basis for believing that the threshold
values obtained for one project would apply equally well for
another project. To apply our approach on other projects, a new
training set is still required which implies additional manual
assessment. This limits the practicality of application our our
method to projects with a large enough number of comments,
where the classification effort saved overcomes the training
costs. To fully automate this approach, we have to investigate

the use of similarity conditions for many other different projects.
Thus, additional studies are needed to improve our approach
and potentially identify invariant conditions for similarly and
usefulness.

VI. CONCLUSIONS

In this paper, we propose a practical approach to classify
usefulness of discussion comments in MCR based on VSM sim-
ilarity. The results from our case study show that our approach
can classify comments with better performance than a random
model both for precision and recall. In addition, we found that
85% of comments in Gerrit are automatically generated and
not likely useful (but important for record keeping). For the
remaining 15%, about 43% of them are automatically classified
as useful, while about 34% are classified as not useful. The
remaining 23% could not be classified by model, and required
manual classification. Thus the classification effort is reduced
by about 77%.

More work could be done in the future to relate the amount
of useful comments to the software quality. This could enable
a way of assessing process quality in a quantitative way. Future
work could also consider different models other than semantic
similarity.

REFERENCES

[1] A. Bacchelli and C. Bird, “Expectations, Outcomes, and Challenges of
Modern Code Review,” in Proc. of ICSE ’13, 2013, pp. 712–721.

[2] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens, “Modern Code
Reviews in Open-Source Projects : Which Problems Do They Fix ?
Categories and Subject Descriptors,” in Proc. of MSR’14, 2014, pp.
202–211.

[3] O. Baysal, O. Kononenko, R. Holmes, and M. W. Godfrey, “The Influence
of Non-Technical Factors on Code Review,” in Proc. of WCRE’13, 2013,
pp. 122–131.

[4] S. Mcintosh, Y. Kamei, B. Adams, and A. E. Hassan, “The Impact of
Code Review Coverage and Code Review Participation on Software
Quality Categories and Subject Descriptors,” in Proc. of MSR’14, 2014,
pp. 192–201.

[5] K. Hamasaki, R. G. Kula, N. Yoshida, C. C. A. Erika, K. Fujiwara, and
H. Iida, “Who does what during a Code Review ? An extraction of an
OSS Peer Review Repository,” in Proc. of MSR’ 13, 2013, pp. 49–52.

[6] P. K. Prasetyo, D. Lo, P. Achananuparp, Y. Tian, and E.-P. Lim,
“Automatic classification of software related microblogs,” in Proc. of

ICSM’12, 2012, pp. 596–599.

[7] S. Gottipati, D. Lo, and J. Jiang, “Finding relevant answers in software
forums,” in Proc. of ASE’11, 2011, pp. 323–332.

[8] P. Thongtanunam, R. G. Kula, A. E. C. Cruz, N. Yoshida, and
H. Iida, “Improving Code Review Effectiveness through Reviewer
Recommendations,” in Proc. of CHASE’14, 2014, pp. 119–122.

[9] R. V. Hogg and E. A. Tanis, Probability and Statistical Inference 7th

Edition, 2005.

[10] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers talking
about? An analysis of topics and trends in Stack Overflow,” Jornal of

EMSE’12, vol. 19, no. 3, pp. 619–654, 2012.

